Different void shapes in Si at the SiC thin film / Si ( 111 ) substrate interface

نویسنده

  • Jörg Jinschek
چکیده

The shape of interfacial voids formed in the epitaxial SiC/Si(111) heterosystem just underneath the SiC film has been investigated using optical microscopy and transmission electron microscopy (TEM). SiC films are grown on Si(111) substrates at two different substrate temperatures (specimen type 1 at 850°C, specimen type 2 at 1050°C) using solid-source molecular-beam epitaxy (MBE). At 850°C substrate temperature the well-known triangular void shape with primary {111} facets is formed in the Si substrate confirming the results already reported by Learn and Khan in 1970. When growing at 1050°C substrate temperature a new void shape showing a hexagonal appearance in the plan-view direction is found. By indexing the hexagonal void planes, other facets with higher surface energies than the usual {111} type facets have been observed leading to a void shape near the equilibrium void shape in a cubic crystal. As in the case of the triangular shaped voids, the formation process of the hexagonal shaped voids should start from the {111} planes, however, due to the higher substrate temperature, planes with higher surface energies are formed in addition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Substrate on Structural and Electrical Properties of Cu3N Thin Film by DC Reactive Magnetron Sputtering

The aim of this paper is to study the effect of substrate on the Cu3N thin films. At first Cu3N thin films are prepared using DC magnetron sputtering system. Then structural properties, surface roughness, and electrical resistance are studied using X-ray diffraction (XRD), the atomic force microscope (AFM) and four-point probe techniques respectively. Finally, the results are investigated and c...

متن کامل

Photoemission measurements of Ultrathin SiO2 film at low take-off angles

The surface and interfacial analysis of silicon oxide film on silicon substrate is particularly crucial in the nano-electronic devices. For this purpose, series of experiments have been demonstrated to grow oxide film on Si (111) substrate. Then these films have been used to study the structure of the film by using X-ray photo emission spectroscopy (XPS) technique. The obtained results indicate...

متن کامل

Growth of Highly C-axis Oriented Aln Films on 3c-sic/si Substrate

For the first time, highly c-axis oriented heteroepitaxial AlN thin films have been successfully grown on epitaxial 3C-SiC films on Si (100) substrates. The AlN films deposited by the AC reactive magnetron sputtering at temperatures of approximately 300-450 °C were characterized using the scanning electron microscope (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and transmissio...

متن کامل

Microscopically-Tuned Band Structure of Epitaxial Graphene through Interface and Stacking Variations Using Si Substrate Microfabrication

Graphene exhibits unusual electronic properties, caused by a linear band structure near the Dirac point. This band structure is determined by the stacking sequence in graphene multilayers. Here we present a novel method of microscopically controlling the band structure. This is achieved by epitaxy of graphene on 3C-SiC(111) and 3C-SiC(100) thin films grown on a 3D microfabricated Si(100) substr...

متن کامل

Deconvoluted Si 2p Photoelectron Spectra of Ultra thin SiO2 film with FitXPS method

The main impetus for our research is provided by the growing interest worldwide in ultra thin silicon dioxide on silicon based nano devices. The obvious need for better knowledge in the ultra thin gate silicon dioxides, is motivated both by interests in fundamental research and phenomenology as well as by interests in possible applications, which can be found with better fitting of experimental...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000